Soft Microphone Cable (JCS4271 compliant) For Fixing Parts

SOFTEC MIC CORD 0.3mm² ~ 0.75mm²

| Applications/Features

- For microphone, signal lines, etc.
- Excellent flexibility. More flexible than MVVS series.
- The braided shield reduces the noise.**1
- Compliant with RoHS2.

*1 This cable is not designed for the tough environment under heat and oil. In such case, U-TKVV series and TKVVBS series are suitable.

Standard

Standard

	TASTUTA TACHII Standard
Standard	(JCS4271) ** 2
Style/Type	_
Rated volage	60V
Rated temp.	60°C
Flame retardance	JIS 60° Inclining

Construction/Properties

	Conductor			Insulation		Sheath			Conductor	Insulation	Test	Allowable	
Model	Size	Const- ruction	OD	Thick -ness	OD	Thick -ness	OD	Weight	resistance (20°C)	resistance (20°C)	Voltage	Current (30°C)	Length
	AWG	No./mm	mm	mm	mm	mm	mm	kg/km	Ω/km	$M\Omega\cdot\! km$	V·1min	А	m
0.3 mm $^2 \times 1$ C	0.3	12/0.18	0.7	0.40	1.5	1.00	4.0	24	64.4 or under 65.7 or under	5 or more	AC1000	5.8	100 (B)
$0.3\text{mm}^2 \times 2\text{C}$						1.00	5.5	40				4.7	
$0.3\text{mm}^2 \times 3\text{C}$						1.00	5.8	46				4.1	
$0.3\text{mm}^2 \times 4\text{C}$						1.00	6.2	57				3.7	
0.5mm ² × 1C	0.5	20/0.18	0.9	0.45	2.0	1.00	4.3	27	37.8or under 38.5 or under	5 or more	AC1000	8.2	100 (B)
$0.5\text{mm}^2 \times 2\text{C}$						1.00	6.1	49				6.8	
0.5 mm $^2 \times 3$ C						1.00	6.4	54				5.9	
$0.5\text{mm}^2 \times 4\text{C}$						1.00	6.9	68				5.3	
0.75mm ² × 1C	0.75	30/0.18	1.1	0.50	2.1	1.00	4.6	32	25.8or under 26.4 or under	5 or more	AC1000	10.7	100 (B)
0.75 mm ² \times 2C						1.00	6.7	60				8.8	
0.75 mm ² \times 3C						1.00	7.1	73				7.7	
0.75mm ² × 4C						1.00	7.6	86				6.9	

[•] Refer to P.53 "Pattern 10" " for core configuration.